SPDT RF Switch

Absorptive RF Switch with internal driver. Single Supply Voltage, +3V to +5V

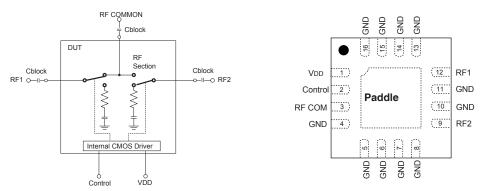
Product Features

- High Isolation, 65 dB typ. at 1 GHz
- Low insertion loss, 1.0 dB typ. at 1 GHz
- High IP3, 50 dBm typ. at 1 GHz
- Fast switching, Rise/fall time, 23 ns typ.
- Low current consumption, 12 μA typ.

Typical Applications

- Automated switching networks
- Cellular/ PCS
- ISM, WCDMA, WiMAX, LTE

50Ω 500-6000 MHz



CASE STYLE: DG1235-1

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

General Description

VSWA2-63DR+ is a high isolation absorptive SPDT switch with integral CMOS driver, operates with single positive supply voltage while consuming, 12µA typical. It has been designed for very wideband operation of 500-6000 MHz for 50 Ω systems and yet is usable in 75 Ω systems with degraded return loss. This switch is usable over an extended frequencies from 300 kHz to 500 MHz with reflective switch performance. It is packaged in a tiny 4mm x 4mm x 0.9mm package and is rated MSL1 and class 1A ESD.

Simplified Schematic and Pad Description

Function	Pad Number	Description
RF COM	3	RF Common/ SUM Port, requires DC block (see Fig. 2)
RF1	12	RF Out #1/In Port #1, requires DC block (see Fig. 2)
RF2	9	RF Out #1/In Port #2, requires DC block (see Fig. 2)
Control	2	CMOS Control IN
VDD	1	Supply Voltage
GND	4,5,6,7,8,10,11 13,14,15,16, paddle	RF Ground

Notes

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

Characteristic and quality attributes and contained in this specification document are based on Mini-Circuits applicable established test performance data contained in this specification document are based on Mini-Circuits applicable established test performance data contained in this specification document instructions.
C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

REV. E M155299 VSWA2-63DR+ ED-12806A 160324 Page 1 of 5

SPDT RF Switch

VSWA2-63DR+

Parameter	Condition (MHz)	Min.	Тур.	Max.	Units	
Frequency Range		500		6000	MHz	
	0.3 to 500		0.7			
	500 to 2000		0.7	1.3		
Insertion Loss ⁽²⁾	2000 to 3000		0.8	1.5	dB	
	3000 to 4000		0.9	1.5	UD UD	
	4000 to 6000		1.0	1.9		
	0.3 to 500	—	73			
	500 to 2000	56	66			
Isolation between Common port and RF1/RF2 Ports	2000 to 3000	50	64		dB	
	3000 to 4000	45	58		UD	
	4000 to 6000	38	54			
	0.3 to 500		74			
	500 to 1000	50	60			
Isolation between RF1 and RF2 ports	1000 to 2000	45	56			
Isolation between RFT and RF2 ports	2000 to 3000	40	52		dB	
	3000 to 4000	38	50			
	4000 to 6000	34	46			
	0.3 to 500		24			
	500 to 2000		23			
Return Loss (ON STATE)	2000 to 3000		23		dB	
Retuill LOSS (ON STATE)	3000 to 4000		22		UD	
	4000 to 6000		20			
	500 to 2000		23			
	2000 to 3000		33			
Return Loss @ RF1/RF2 ports (OFF STATE)	3000 to 4000		23		dB	
	4000 to 6000		24			
Input IP3 V _{DD} =3V	500 to 2000		46			
	2000 to 6000		40			
V _{DD} =5V	500 to 2000		50		dBm	
	2000 to 6000		44			
Input Compression ⁽³⁾ 1dB,V _{DD} =3V	500 to 2000		24			
• •	2000 to 6000		22		-ID	
0.2 dB, V _{DD} =5V	500 to 2000		30		dBm	
	2000 to 6000		27			

RF Electrical Specifications⁽¹⁾, 500 - 6000 MHz, T_{AMB}=25°C, V_{DD}= +3V to +5V

DC Electrical Specifications

Parameter	Min.	Тур.	Max.	Units
VDD, Supply Voltage	3		5	V
Supply Current $(V_{DD} = 5V)^{(4)}$		50		μA
Control Voltage Low	0		0.5	V
Control Voltage High ⁽⁵⁾	2.7(6)		V _{DD}	V
Control Current		5		μA

Notes:

1. Tested on Mini-Circuit's test board TB-407+, using Agilent's N5230A network analyzer (see Characterization Test Circuit, Fig.1). 2. Insertion loss values are deembedded from test board loss.

3. Do not exceed RF input power as shown in Absolute Maximum Rating table.

4. Supply current increases with switching repetition rate. See graph.

5. CMOS interface. Latch up condition may occur when logic high signal is applied prior to power supply.

6. 3.5V for V_{DD}=4 to 5V

Switching Specifications

Parameter	Min.	Тур.	Max.	Units
Rise/Fall Time (10 to 90% or 90 to 10% RF)		23		nSec
Switching Time, 50% CTRL to 90/10% RF		35		nSec
Video Feedthrough, (control 0 to 3V, freq.=500 KHz, V _{DD} =5V)		25		mV _{P-P}

Notes

Notes
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp

Absolute Maximum Ratings⁽⁶⁾

Parameter	Ratings		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-65°C to 150°C		
V _{DD} , Supply Voltage	2.7 to 5.5V		
Voltage Control	-0.2V Min. V _{DD} Max.		
RF input power	1Watt		
Dissipated Power at 25°C	350mW		

6. Operation of this device above any of these conditions may cause permanent damage

Truth Table	(State of control voltage selects the desired switch state)
-------------	--	---

State of Control Voltors	RF Common to		
State of Control Voltage	RF1	RF2	
Low	ON	OFF	
High	OFF	ON	

ON- low insertion loss state OFF- Isolation State

Characterization Test Circuit

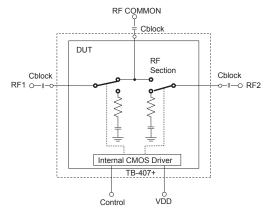


Figure 1: Block Diagram Of Test Circuit Used For Characterization. (DUT soldered on Mini-Circuit's TB-407+)

Test Equipment:

For Insertion loss, Isolation, Return loss and DC current:

Agilent's N5230A Network Analyzer , E3631A power supply. Cblock: Internal to network Analyzer.

For Switching Time and DC Current:

Agilent's 54832B oscilloscope, 81110A pulse generator and E3631 A power supply. Cblock: Mini-Circuits BLK-18-S+ For Input IP3:

Mini-Circuits DC blocks: BLK-18-S+ on all ports, Agilent's E8257D signal generators, 437B power meter, N9020A Signal analyzer and E3631 A power supply.

For Compression:

Mini-Circuits DC blocks: BLK-18-S+ on all ports. ZVE-8G and ZHL-42W amplifier as driver amplifier at RF Common. Agilent's N5230A Network Analyzer, E3631A power supply

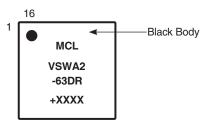
Conditions:

 V_{DD} = +3 and +5V, Control= 0 and 3V.

For Insertion loss, isolation and return loss: Pin=0 dBm

For Input IP3: Pin=-5dBm/tone.

For Switching time: RF frequency: 500 MHz at 0 dBm, Control Frequency: 500 KHz and 0 and +3V.


Notes

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collective), "Standard Terms"), Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp

-Circuits

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com

Product Marking

Evaluation Board: TB-486+

Environmental Ratings: ENV41

Recommended Application Circuit

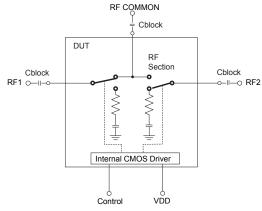


Fig. 2: Evaluation board includes case, connectors and components soldered to PCB.

Frequency (MHz)	Cblock (Suggested value)
0.3-500	0.1µF
500-6000	47pF

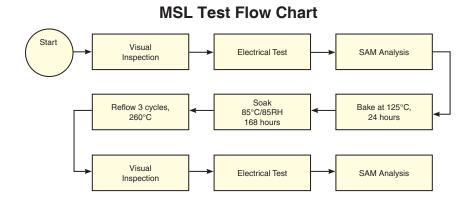
Cblock should be free of resonance over frequency of operation.

Notes

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/WCLStore/terms.jsp

IMini-Circuits

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com


ESD Rating

Human Body Model (HBM): Class 1A (250 to < 500V) in accordance with JESD22-A114

Machine Model (MM): Class A (Passes 50V) in accordance with JESD22-A115

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collective), "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com